课程收益:
通过本次培训中实际案例的分享,了解数据管理和运营中的各种经验教训(别人花费上百亿学费买来的经验啊!),深刻理解大数据运营的意义,发掘客户精确营销和运营的价值。 通过本次培训中实际案例的分享,了解数据管理和运营中的各种经验教训(别人花费上百亿学费买来的经验啊!),深刻理解大数据运营的意义,发掘客户精确营销和运营的价值。
课程背景:
2015年,中国的营销者正面临着一个极具挑战的经济时局,然而他们有机会通过撬动海量数据的杠杆来获取巨额收益。
面对中国5.13亿的互联网用户、多样化的1.8万亿GB数据,以及企业数据每年55%的增长速度,在蓬勃发展的中国市场环境中,大数据所带来的机遇前所未有,这将是中国市场的营销者们预期取得大回报的最佳时机。营销者必须知道如何透过数据库的挖掘与分析,让手中的数据与信息发挥最大的价值,通过有效整合、分析线上和线下数据,提高与客户、潜在客户互动的精准度
本讲座通过电信行业客户分析的实际案例,介绍数据分析技术在客户营销、企业管理等方面的应用价值。
培训目标:
大数据时代下,客户的重新认识和精确营销,企业的精细化运营,如何提升企业的核心竞争能力,如何更新企业运营的新理念。了解大数据处理的基本技术,包括数据仓库、云计算、数据挖掘、元数据等基本内容。解决数据质量的方法和经验,数据管理的组织机构设置等。
课程内容:
一、“大数据、大生意”:
1.概述
1)大数据概念和特点
2)大数据需要哪些技术支撑
3)大数据能够带来哪些新应用?
2.大数据时代带来对传统营销的挑战
1)大数据如何成为资产?
2)大数据如何体现精确营销
3)大数据的价值
3.大数据时代的新营销模式
1)互联网的营销模式——微博营销、网页营销等
2)CRM——“旧貌焕发新颜”
3)精确营销——装上了GPS,实现“精确打击”
4.如何在海量数据中整合线上、线下数据,形成你对消费者的独特洞察力
1)知道客户的各个属性——互联网时代不再“是否是狗”
2)客户的群体特征——“人以群分”
5.如何建立全渠道数据平台,拓展营销渠道,提高营销效率
1)客户接触渠道分类
2)电话、QQ、微博——全方位覆盖
3)如果进行广告的精确投放?
6.大数据的实现技术
1)HADOOP技术了
2)MAP/REDUCE算法
3)非结构化数据分析的特点
二、大数据下客户的“透视”:
1、客户是“上帝”,如何找到“上帝”?
1)上帝是什么样子?
上帝是什么视图?
2)客户是什么样子?
客户是什么视图?
3)提供哪些产品?
产品是什么视图?
4)如何建立客户和产品间的关系?
为合适的客户,找到合适的产品
2、我们对自己的客户(“上帝”)了解多少?
1)客户会有什么特点?
客户的基本特征(如:不同产品的年龄分布)
客户的群体特征(如:不同年龄群体关注点有哪些?)
现代营销模式的基础,以现有产品为基础,寻找群体客户适合的产品和服务。
客户的交往圈子(如:户外旅游圈子关注哪些产品?)
另一个角度规划产品和服务。
2)营销的方法
营销方法论和知识库(分析问题的知识库和方法树)
金融产品营销的特点(没有实物的高利产品)
贴片广告:《非诚勿扰2》里送保险,似乎比送房子更时尚
3)企业管理方面的情况
及时发现企业真实的情况(哪些运营的关键指标KPI?)
像人体一样,如何及时发现病症?(关键指标KPI的波动范围?)
示例:企业的数码仪表盘,展示企业的KPI;手机彩信及时展现KPI给领导。
3、如何“帮客户买产品,而不是推销其不需要的产品”
1)如何进行客户的“X光透视”?
(客户的统一视图包含哪些信息?哪些是关键属性?)
如何发现客户的真实需求?(服务与骚扰的区别)
示例:电信行业客户的统一视图
2)内部产品的科学选配
(如何提供专家般量化的分析,为用户提供最优的内部产品?
如:电信行业计算出最适合用户模式的资费进行选择)
示例:为客户定制最合适的资费:经过数据精算后,告诉客户,A产品比B产品更适合张三。
3)竞争对手产品的对比
与竞争对手间的产品差异化区隔
自己产品的优势和弱点(如何提供量化的分析结果?)
示例:竞争对手的客户回归
4)销售过程的处理
销售时机的把握销售语术的把握
4、大数据营销的作用和价值
1)数据和知识是人的本质特征
2)大脑是人与动物的差别
3)“事半功倍”是捷径
4)从“拼刺刀”到“信息战”;示例:某人关系图
5、如何避免对客户的骚扰
1)客户外呼的次数控制
2)客户外呼的内容控制
3)客户外呼的时机控制
4)语术的把握避免投诉
6、员工坐席的“服务适配”问题
1)客户是什么类型?
2)员工是什么类型?
3)产品的合适客户群如何?
4)如何让匹配的员工坐席为客户提供服务?
三、基础数据的收集和整理
1、数据的种类
1)客户数据内容(保险客户的基本资料)
2)产品数据内容(产品的编码)
3)营销数据内容(交易记录的保存)
4)服务数据内容(客户服务数据的保存)
5)金融数据的特点:(交易型数据较少、安全要求高等)
2、数据的存放方法
1)数据的清洗、转换和加载
2)存放在数据库/数据仓库
3)数据的基本分析工具EXCEL等
3、数据的基本整理
1)数据的归类存放(建模型)
2)数据的基本加工
4、数据的基础分析
1)数据的基本汇总
2)数据中的“金子”:从石头中淘金子
3)数据挖掘:“啤酒和尿布”的故事
4)高级的数据挖掘工具SAS和SPSS等
示例:切入几张工具的示意界面图
5、数据质量的基本保障
1)指标的口径描述和统一
2)后期补数据成本是前提收集数据成本的15倍
3)“差之毫厘谬以千里”
6、网销/电销数据的收集和整理
1)网销数据的收集/整理
2)电销数据的收集/整理
3)电销和网销数据的关键点:
示例:互联网电销企业的营销案例(产品关联分析)
四、客户的分析和认知
1、客户的定义和范畴
用户和客户的区别
客户是否要进行细分,如校园客户、家庭客户等
2、关于客户的基本“信息”(管中窥豹)
身份证信息行为爱好信息衍生信息
3、客户的基本属性标签(如旅行者推销旅行险等)
增值服务等方面,让服务更加贴近客户
4、客户的喜好(“不怕没缺点,就怕没爱好”)
经常出没的地方(高尔夫场、酒吧街、电影院等)
通过前台的观察和后台的询问等获取的知识
5、客户的细化分群
客户分群的依据(物以类聚、人以群分)
示例:电信行业客户分群案例
6、客户的知识库
实时调出符合条件的客户群体来
示例:电信行业客户知识库举例
7、如何识别欺诈客户
如何识别欺诈客户如何防范风险
示例:电销行业客户欺诈案例描述
8、客户的“再挖掘”(UPSELL/CROSSSELL)
客户群中的“种子/关键”客户客户的交往圈分析
示例:客户交往圈分析案例
基于客户交往圈,进行客户“再挖掘”
9、客户的生命周期管理
客户的生命周期数据分析渗透到客户的生命周期全过程
10、电销/网销中能进行哪些客户分析和营销?
网络可以泄露客户更多的信息;(如何买到合适的数据?)
对客户更深层的了解,就可以进行合适的营销:
五、如何为合适的用户提供合适的金融产品?
1、营销的目的:为合适的用户提供合适的产品
除了“激情营销”,更需要“理性营销”;真正满足客户需求才能构建长久的营销关系;
客户的真实需求如何?
2、如何发现合适的用户
谁是合适的客户?标准有哪些?客户的担心、顾虑是什么?
3、如何提供合适的产品
从现有的产品客户中寻找目标客户特征
示例:客户针对性营销案例示例
4、营销案的设计和评估
如何吸引用户?如何让用户选择产品?
5、营销的过程和细节
类似CRM系统的营销流程管理
示例:电信行业CRM营销的流程框架图
6、营销的渠道选择
客户是否喜欢外呼电话,还是短信?还是网上营业厅?
示例:用户偏好渠道分析的案例
7、如何避免对客户的过渡打扰
限制每月的外呼次数;
8、网销/电销的客户数据挖掘
9、客户的挽留和延伸销售
识别真正有价值的客户;
案例:客户价值评估介绍
尽量让客户进入更高级别,避免降级:(电信行业的价格战,将钻石卡用户打成了金卡;金卡用户打成了银卡)
六、如何编写漂亮的分析报告(既有漂亮里子,也要有漂亮面子)
1、数据是基础
2、分析报告是展现形式
3、分析报告的思路
4、分析报告的方法
示例:分析报告演示
七、数据的质量问题
(数据仓库项目的60%精力是在解决数据质量问题)
1、数据质量的问题表现
接通率的量化依据数据转换成为成功订单几率的描述
示例:数据质量的问题分布图
2、数据质量的根源在哪里
业务管理的标准化指标的口径一致性问题
3、数据质量的管理模式
理清数据的来龙去脉列出数据的监控点
4、数据质量的量化评估方法
数据质量的评估标准
示例:数据质量的评估指标
八、云计算技术
1.Hadoop项目简介
2.HDFS体系结构
3.HDFS关键运行机制
4.MapReduce产生背景
5.MapReduce编程模型
6.MapReduce实现机制
7.MapReduce案例分析
8.HIVE介绍
9.HBASE介绍
九、总结和展望